Internet of Things

IoT is a broad term, often defined in different ways. To get a good understanding of what the Internet of Things actually is, it’s best to break the term down into few parts.

What is referred to as a “Thing” in the Internet of Things are objects, animals and even people equipped with smart devices (sensors) to collect certain information. So that thing could be either a fridge that uses a smart module or an animal with a smart band applied to it that monitors its vital functions. Devices communicate to send and receive data. In order for them to communicate, they need a network connection, and this is referred to as the “Internet” in IoT. This connection can be made with a variety of data transmission technologies. We can mention Wi-Fi, 5G networks, Bluetooth, as well as more specialised protocols such as Zigbee, which, thanks to its low power consumption, is great for IoT devices where lifespan is of key importance, or Z-Wave often used in smart building systems.

It’s a good idea to mention here that not every IoT device needs to have direct access to the Internet. The data collected by IoT devices is then uploaded and analysed. In order to efficiently collect and analyse large data sets, as well as to ensure high system scalability, cloud technologies are often used. In this case, Internet of Things devices can send data to the cloud via an API ( (API gateway). This data is then processed by various software and analytical systems. Big Data, artificial intelligence and machine learning technologies are used to process data.

IoT applications

IoT has many various applications, using household items, lighting or biometric devices, to name a few.

Internet of Things
Figure 1 Internet of Things

The figure above shows 101 terms related to the Internet of Things, divided into categories. It’s plain to see that there are many technologies associated with IoT, ranging from connectivity issues, data processing and analysis to security and IoT network architecture. We will not describe the above-mentioned technologies in this article, but we should bear in mind what an immensely extensive field IoT is and how many other technologies are involved.

The Internet of Things is developing at a very fast pace, recording high annual growth rates. According to various estimates, the IoT market will grow at a rate of 30 per cent in the next few years, and in Poland this rate could reach up to 40 per cent. By 2018, there were around 22 billion connected Internet of Things devices, and it is estimated that this number could be up to as many as 38.6 billion devices by 2025.

The Internet of Things in the future

The Internet of Things is finding its way into more and more areas of our lives. Household goods and lighting items are things we use pretty much every day. If we add some “Intelligence” to ordinary objects, it becomes easier to manage the entire ecosystem of our home or flat. As a result, we will be able to optimise the costs of equipment wear and tear and their working time. The collection of huge amounts of data, which will then be processed and analysed, is expected to bring about even better solutions in the future. In recent years, it’s often been mentioned that “Data is the gold of the 21st century.” and IoT is also used to collect this data. With IoT progressing like that, it won’t be long before smart devices are with us in the vast majority of our daily activities.

Controversy around the Internet of Things

The development of the Internet of Things will bring many changes to everyday life. The biggest problem with this is security. Because of the amount of data collected by devices, which very often have no or very low levels of security, exposes the user to breach or having no control over such data. Another issue is the dispute over who should have access to the data. Questions of morality are raised here, such as whether large corporations should be able to eavesdrop on the user on a daily basis. The companies explain their modus operandi by the fact that the data collected is a tool for the development of the offered services.

Opponents, on the other hand, see it the other way around, considering an intrusion into user privacy and uncertainty with where the collected data may end up. However, a new avenue is emerging, namely –  the use of blockchain technology to securely store data in the IoT network. By using a decentralised blockchain network, there will be no central entity with control over user data. The technology also ensures the non-repudiation of the data, meaning the certainty that the data has not been modified by anyone.

Who will benefit form the Internet of Things?

IoT is targeting different industries. Solutions are being developed for both the consumer market and the business market. The companies involved in this area will have a substantial platform to develop their solutions. The upcoming revolution will also change many areas of our lives. Also, the ordinary user will also get something out it, as he or she will have access to many solutions that will make his or her life easier. The Internet of Things presents tremendous opportunities, but there is no denying that it can also bring entirely new risks. So – in theory – the IoT will benefit everyone. You can read more about the security of IoT devices in our article.

BFirst.Tech and IoT

As a company specialising in the new technology sector, we are not exactly sleeping on the subject of IoT either. Working with Vemmio, we are developing the design of a voice assistant to manage a house or flat in a Smart Home formula. Our solution will implement a voice assistant on the central control device of the Smart Home system. Find out more about our projects here.

With biometric authentication, the first thing that gets checked is the voice that issued the command to activate the device. If the voice authentication is positive, the device is ready to operate and issue commands through which home appliances can be managed. That’s exactly the idea behind the Smart Home. This solution makes it possible to manage a flat or smaller segments of it or even an entire building.

Individual household appliances, lighting or other things are configured with a device that helps us manage our farm. This is the technical side, where the equipment has to be compatible with the management device. This puts the control centre in one place, and today operating  entire system can be managed with a smartphone is already a standard. With the voice assistant feature, the entire system can be controlled without having to physically use the app. Brewing coffee in the coffee machine, adjusting the lighting or selecting an energy-saving programme will be all possible with voice commands.

References

[1] http://www.ericsson.com/en/mobility-report/reports/november-2019?gclid=CjwKCAiAvonyBRB7EiwAadauqWaie96-SXyvRu_e7gBRgaYd8mozXvppEE_6LPCAeA3TsR6l5sQuNxoCxUwQAvD_BwE&gclsrc=aw.ds

[2] http://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/non-geek-a-to-z-guide-to-internet-of-things-108846.pdf

Introduction to neural networks

The topic of neural networks in the IT area has become very popular in recent years. Neural networks are not a new concept, as they were already popular in the 1970s. However, their real development took place in the 21st century due to the technology’s huge leap forward. Neural networks are one of the areas of artificial intelligence (AI). The interest in neural networks is growing, thus forcing us to constantly develop and improve them.

Characteristics

In order to describe the way neural networks work, it is worth referring (in a certain simplification) to the way the human nervous system works. The characteristic of the functionality is acting as a biological system. Despite enormous progress and the use of innovative solutions, today’s networks still are not able to act as well as the human brain. However, it can’t be ruled out that in the future such an advanced stage of development will be reached.

Neural network structure

The neural network consists of a certain number of neurons. The simplest neural network is called perceptone, which consists of only one artificial neuron. Input data with assigned weight scales are sent to the perceptone – it determines the final result of a parameter. This set of data is later sent to the summation block. The summation block is just a pattern, an algorithm prepared by programmers. Summing all inputs gives a result, which in today’s advanced types of artificial neurons answers the form of a real number. The result informs about the type of decision that was made based on the calculations.

Illustrative diagram of the perceptron operation
Img 1 Schematic diagram of how a perceptron works. Each of the 4 input elements is multiplied by its corresponding weights. The products are summed (summation block) and the sum is passed to the activation function (activation block), whose output is also the output of the perceptron.

The usage of neural networks

When it comes to the development of AI, it is closely connected to the development of neural networks. An unquestionable advantage of networks is that they have a wide range of applications. Furthermore, they leave room for unlimited possibilities for further development. Another advantage of it is that they deal well with large data sets, which are sometimes very difficult for humans. What’s more, they can adapt to the new situations when new variables appear. However, most available on the market programs do not have this possibility.

Neural networks’ ability to work based on damaged data is still a field of development. They will find applications in a growing number of areas, mainly in finance, medicine, and technology. Neural networks will appear successively in areas that require solutions related to prediction, classification, and control. They will find their application wherever creating scenarios or making decisions is based on many variables.

References

[1] http://businessinsider.com.pl/technologie/czym-sa-sieci-neuronowe/pwtfrsy

[2] http://pclab.pl/art71255-2.html